

(12) United States Patent

Lunn et al.

US 9,345,467 B2 (10) **Patent No.:**

(45) **Date of Patent:**

May 24, 2016

(54) ANCHOR ASSEMBLY

(75) Inventors: **Richard Lunn**, Kingston, MA (US);

David A. Paulk, Hopedale, MA (US); Thomas C. May, Wrentham, MA (US); Steven Astorino, Norton, MA (US)

Assignee: Smith & Nephew, Inc., Memphis, TN

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 811 days.

(21) Appl. No.: 12/259,106

(22)Filed: Oct. 27, 2008

(65)**Prior Publication Data**

> US 2009/0112270 A1 Apr. 30, 2009

Related U.S. Application Data

- (60) Provisional application No. 60/982,521, filed on Oct. 25, 2007, provisional application No. 60/986,342, filed on Nov. 8, 2007.
- (51) Int. Cl. A61B 17/04 (2006.01)
- (52)U.S. Cl.

CPC A61B 17/0401 (2013.01); A61B 2017/0403 (2013.01); A61B 2017/044 (2013.01); A61B 2017/0412 (2013.01); A61B 2017/0414 (2013.01); A61B 2017/0427 (2013.01); A61B 2017/0453 (2013.01)

(58) Field of Classification Search

CPC A61B 2017/0425; A61B 2017/0412; A61B 2017/0453

USPC 606/232, 321; 411/16, 18, 21 See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

254,473 A		3/1882	Gates		
3,187,620 A	*	6/1965	Fischer 411/80.5		
3,268,965 A		8/1966	Arthur		
4,636,121 A	*	1/1987	Miller 411/21		
4,750,492 A		6/1988	Jacobs		
4,870,957 A		10/1989	Goble et al.		
4,927,421 A		5/1990	Goble et al.		
5,037,422 A		8/1991	Hayhurst et al.		
5,100,417 A		3/1992	Cerier et al.		
5,102,421 A		4/1992	Anspach, Jr.		
5,141,520 A		8/1992	Goble et al.		
(Continued)					

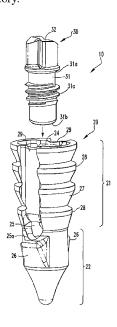
FOREIGN PATENT DOCUMENTS

DE 200007777 U1 8/2000 DE 102008016607 A1 7/2009

(Continued)

OTHER PUBLICATIONS

International Search Report and Written Opinion for PCT/US2008/ 081342 Dated Feb. 26, 2009.

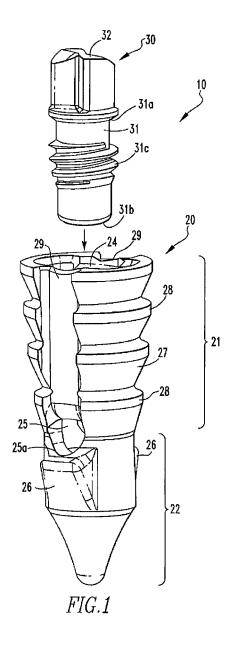

(Continued)

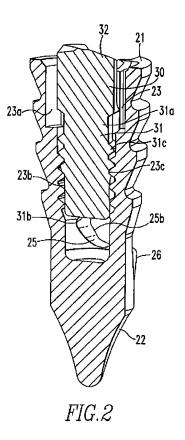
Primary Examiner — David Bates (74) Attorney, Agent, or Firm — Norman F. Hainer, Jr.

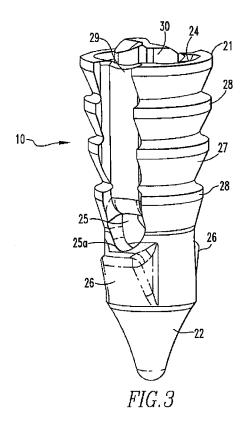
ABSTRACT

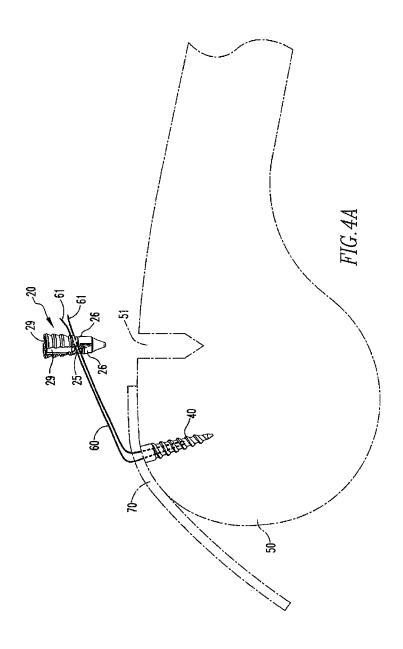
The present disclosure relates to an anchor assembly. The anchor assembly includes an anchor defining a cavity and an opening to the cavity and an insertion member configured for arrangement within the anchor cavity. The insertion member includes a body having a proximal end portion and a flat distal end portion, and a head coupled to the proximal end portion of the body. A method of tissue repair and other anchor assemblies are also disclosed.

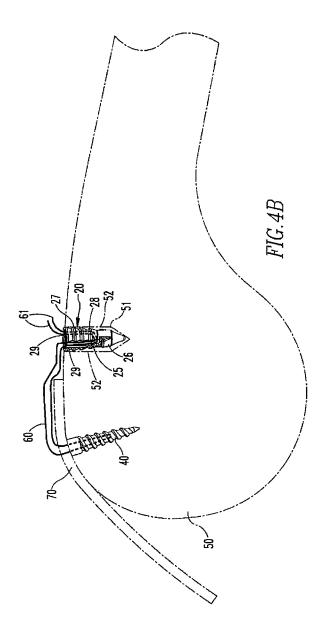
28 Claims, 7 Drawing Sheets

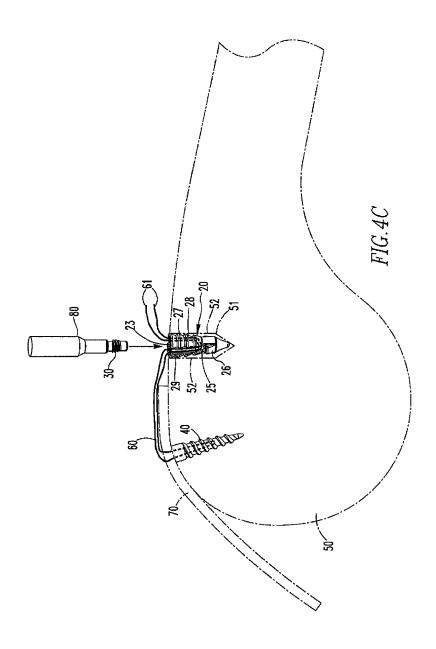


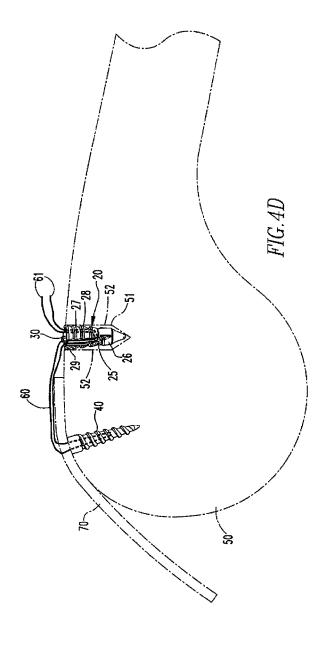

US 9,345,467 B2


Page 2


(56)	Referei	nces Cited	7,008,451 B		Justin et al 623/13.14 Foerster
-	U.S. PATENT	DOCUMENTS	7,083,638 B 7,090,690 B		Foerster et al.
			7,416,556 B		Jackson
5,152,790		Rosenberg et al.	7,491,217 B		Hendren et al 606/232
5,156,616		Meadows et al.	7,585,311 B 7,604,640 B		Green et al.
5,176,682 5,258,016		Chow DiPoto et al.	7,938,847 B		Fanton et al.
5,268,001		Nicholson et al.	8,118,835 B	32 2/2012	Weisel et al.
5,356,435			8,133,258 B		Foerster et al.
5,370,662		Stone et al.	8,137,381 B 8,162,978 B		Foerster et al. Lombardo et al.
5,376,119		Zimmermann et al. Golds et al.	2001/0007072 A		Steiner et al.
5,383,905 5,423,860		Lizardi et al.	2002/0058966 A		Tormala et al.
5,458,601		Young et al.	2002/0147463 A		Martinek
5,464,427		Curtis et al.	2002/0161401 A 2002/0188301 A		Dallara et al.
5,480,403 5,486,197		Lee et al. Le et al.	2002/0188301 A 2003/0065361 A		Dreyfuss
5,500,000		Feagin et al.	2003/0065390 A		Justin et al.
5,505,735			2003/0083669 A		Gleason
5,522,843			2003/0088272 A 2003/0187446 A		Smith Overaker et al.
5,527,342		Pietrzak et al. Le et al.	2003/0187440 A 2003/0195563 A		
5,545,180 5,584,835		Greenfield	2003/0208210 A		Dreyfuss et al.
5,584,860		Goble et al.	2004/0088004 A		Rosch
5,607,432			2004/0093031 A 2004/0098050 A		Burkhart et al. Foerster et al.
5,630,824 5,690,676		Hart DiPoto et al.	2004/0098050 A		West et al.
5,702,397		Goble et al.	2004/0133239 A	1 7/2004	Singhatat
5,707,395			2004/0138706 A		Abrams et al.
5,720,765			2004/0138707 A 2004/0225313 A		Greenhalgh Kanner et al.
5,723,013 5,725,529		Jeanson et al. Nicholson et al.	2004/0223313 A 2005/0033364 A		
5,728,136			2005/0055052 A		Lombardo et al.
5,733,307		Dinsdale 606/232	2005/0107828 A		
5,797,963		McDevitt	2005/0216015 A		Kreidler
5,827,291		Fucci et al.	2005/0222618 A 2005/0245932 A		Dreyfuss et al. Fanton et al.
5,849,004 5,911,721		Bramlet et al. Nicholson et al.	2006/0004364 A		Green et al.
RE36,289		Le et al.	2006/0058800 A		Ainsworth et al 606/72
5,935,129		McDevitt et al.	2006/0079904 A		Thal Denham
5,948,000		Larsen et al.	2006/0235413 A 2006/0253119 A		Berberich et al.
5,948,001 5,957,953		Larsen DiPoto et al.	2006/0271060 A		
6,010,525		Bonutti et al.	2006/0282081 A		Fanton et al.
6,086,608		Ek et al.	2007/0005068 A 2007/0005069 A		Sklar Contiliano et al.
6,117,162 6,129,763		Schmieding et al. Chauvin et al.	2007/0003009 A		
6,136,032		Viladot Perice et al.	2007/0142835 A		
6,146,387		Trott et al.	2007/0167950 A		Tauro et al.
6,149,669			2007/0203498 A 2007/0218424 A		Gerber et al 606/72 Vuorisalo et al.
6,152,934 6,159,235		Harper et al.	2007/0216424 A		Zeiner et al.
6,165,203			2007/0288023 A	12/2007	Pellegrino et al.
6,200,329	B1 3/2001	Fung et al.	2008/0009904 A		Bourque et al. Ritchart et al.
6,200,330		Benderev et al.	2008/0015594 A 2008/0033460 A		Ziniti et al.
6,206,886 6,214,007		Bennett Anderson 606/304	2008/0051836 A		Foerster et al.
6,228,096		Marchand	2008/0077161 A		
6,267,766		Burkhart	2008/0125815 A		Heaven et al. Donnelly et al.
6,287,324		Yarnitsky et al. Schwartz et al.	2008/0133007 A 2008/0208253 A		Dreyfuss et al.
6,319,271 6,368,326		Dakin et al.	2008/0215061 A		Schumacher et al.
6,436,124		Anderson et al.	2008/0249567 A		
6,436,142		Paes et al.	2008/0281353 A		Aranyi et al. Lunn et al.
RE37,963 6,517,542			2009/0112270 A 2009/0312794 A		Nason et al.
6,520,980		Papay et al. Foerster	2009/0318965 A	12/2009	Burkhart
6,527,794		McDevitt et al.	2009/0326545 A		Schaffhausen
6,533,816			2010/0004683 A		Hoof et al.
6,575,987 6,585,730		Gellman et al. Foerster	2010/0094355 A 2010/0318125 A		Trenhaile Gerber et al.
6,585,730			2010/0310123 A	12/2010	Gorber et al.
6,641,596	B1* 11/2003	Lizardi 606/232	FOR	EIGN PATE	NT DOCUMENTS
6,652,563		Dreyfuss	1010		
6,692,516		West et al.		8016607 A1	7/2009
6,736,829 6,783,527		Li et al. Drewry et al.		0611551 A1 1486171	2/1994 12/2004
6,840,953		Martinek		1491162 A2	12/2004


(56)	References Cited	WO WO2008011417 A2 1/2008 WO WO2008054814 5/2008
	FOREIGN PATENT DOC	
	1 ordion (Tribbin)	WO WO2009055800 A1 4/2009
EP	1491162 A2 12/2004	OTHER PUBLICATIONS
EP	1825817 A1 2/2007	OTHER FOBLICATIONS
EP	1825817 A1 8/2007	International Search Report and Written Opinion dated May 25,
EP	1884198 4/2008	
JР	H04-250155 7/1992	2011.
JP	11506644 6/1999	Partial International Search Report and Written Opinion for PCT/
JР	H11-511357 10/1999	US2010/056107 Dated Feb. 23, 2011.
JР	2000-505324 5/2000	Office Action issued in corresponding Australian patent application
JР	2001-505081 4/2001	No. 2008316604 mailed Feb. 5, 2013.
JР	2003505128 2/2003	Office Action received for corresponding JP Application No. 2010-
JP	2003528648 9/2003	531316, Feb. 26, 2013.
JP	2006-501003 1/2006	Office Action for corresponding Japanese application No. 2012-
JP	2007532269 11/2007	538921 mailed Jul. 22, 2014.
WO	9639082 12/1996	
WO	9706731 2/1997	Office Action for corresponding Japanese application No. 2013-
WO	97/07743 3/1997	164031 mailed Jul. 28, 2014.
WO	WO9729693 8/1997	Office Action for corresponding Chinese application No.
WO	9835606 8/1998	201080061088.8 mailed Jun. 23, 2014.
WO	0106909 2/2001	Office action received in corresponding European patent application
WO	0110312 5/2001	No. 08 842 610.1-654 mailed Feb. 11, 2015.
WO	WO0232345 A2 4/2002	Office action received in corresponding Russian patent application
WO	WO0238059 A2 5/2002	No. 2012122617/14(034396) mailed Feb. 19, 2015.
WO	WO0238059 A2 5/2002	Office action received in corresponding Japanese patent application
WO	WO2004062506 A1 7/2004	No. 2013-164031 mailed Feb. 18, 2015.
WO	2004096080 11/2004	Office action received in corresponding Chinese patent application
WO	2005020832 3/2005	No. 201080061088.8 mailed Feb. 27, 2015.
WO	2005037055 4/2005	
WO	WO2005102790 A1 11/2005	Office action received in corresponding Japanese patent application
WO	2006/044491 4/2006	No. 2012-538921 mailed Apr. 6, 2015.
WO	2006/067548 6/2006	Office action received in corresponding Australian patent application
WO	2006060035 6/2006	No. 2010319635 mailed Apr. 29, 2015.
WO	2006/078864 7/2006	
WO	2007134248 11/2007	* cited by examiner





ANCHOR ASSEMBLY

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. patent application Ser. No. 60/982,521 filed on Oct. 25, 2007 and U.S. patent application Ser. No. 60/986,342 filed on Nov. 8, 2007. The disclosures of each application are incorporated herein by reference in their entirety.

BACKGROUND

1. Field of Technology

The present disclosure relates to tissue repair, and more specifically, to an anchor assembly for securing tissue to bone.

2. Related Art

Arthroscopic procedures often require soft tissue to be 20 reattached to bone. To achieve this, anchors are placed in the bone and sutures attached to the anchor are passed through the tissue to securely retain the tissue in place. When making a repair of soft tissue to bone, it is advantageous to have as large an area of contact between the bone and tissue as possible. 25 Anchor points spaced from one another in rows result in a repair having a broader area of contact. A procedure, and components for use in such procedure, that securely attaches tissue to bone using a plurality of attachment points over a large area of contact is needed. Such procedure must be able 30 to be done in a quick and efficient manner with a minimum of recovery time for the patient.

SUMMARY

In one aspect, the present disclosure relates to an anchor assembly. The anchor assembly includes an anchor defining a cavity and an opening to the cavity and an insertion member configured for arrangement within the anchor cavity. The insertion member includes a body having a proximal end 40 portion and a flat distal end portion, and a head coupled to the proximal end portion of the body. The anchor includes protrusions located on an outer surface of the anchor, wherein the protrusions are configured to facilitate loading of a flexible member into the anchor. In an embodiment, the anchor 45 assembly further includes a transverse through hole extending through the anchor. In another embodiment, the anchor assembly further includes at least two slots on an outer surface of the anchor, wherein the slots extend from the transverse through hole to a proximal portion of the anchor. In yet 50 another embodiment, the anchor includes barbs on an outer surface of the body, wherein the barbs are intersected by the

In a further embodiment, at least one flexible member, which may be a suture, is disposed within the through hole. In 55 yet a further embodiment, a plurality of flexible members are disposed within the through hole. In yet an even further embodiment, the cavity includes threads. In an embodiment, the insertion member body includes threads, wherein the threads are configured for engagement with the threads of the 60 present disclosure in repairing tissue. cavity when the insertion member is arranged within the cavity. In another embodiment, the cavity extends into the through hole. In yet another embodiment, the head is configured for engagement with a delivery device. In a further embodiment, the insertion member is arranged within the 65 anchor cavity such that the insertion member secures the flexible member in the through hole.

2

In another aspect, the present disclosure relates to a method of tissue repair. The method includes inserting a first anchor into bone, the first anchor having a flexible member coupled thereto; passing ends of the flexible member through the tissue; providing a second anchor defining a cavity and an opening to the cavity and a transverse through hole extending through the anchor; passing at least one end of the flexible member through the through hole of the second anchor; placing the second anchor into bone; providing an insertion member including a body having a proximal end portion and a flat distal end portion, and a head coupled to the proximal end portion of the body; and placing the insertion member within the anchor cavity of the second anchor to secure the flexible member in the through hole and the tissue to the bone.

In an embodiment, the method further includes tensioning the flexible member before placing the insertion member within the anchor cavity. In another embodiment, the method further includes moving the insertion member away from the through hole, tensioning the flexible member, and moving the insertion member back toward the through hole to resecure the flexible member in the through hole. In yet another embodiment, the second anchor includes protrusions, wherein the protrusions create paths in a wall of the bone when the second anchor is inserted into the bone. The paths allow the flexible member to slide through the second anchor when the second anchor is located in the bone.

In yet another aspect, the present disclosure relates to an anchor assembly. The anchor assembly includes an anchor defining a proximal portion, a distal portion, and an inner cavity; and an insertion member configured for arrangement within the inner cavity. The anchor includes barbs located on the proximal portion and protrusions located on the distal portion, wherein the protrusions are configured to facilitate loading of a flexible member into the anchor. In an embodiment, the insertion member includes a proximal end portion and a flat distal end portion.

Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the disclosure, are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present disclosure and together with the written description serve to explain the principles, characteristics, and features of the disclosure. In the drawings:

FIG. 1 shows an exploded view of the anchor assembly of the present disclosure.

FIG. 2 shows a cross-sectional view of the anchor assembly of the present disclosure.

FIG. 3 shows a front view of the anchor assembly of the present disclosure.

FIGS. 4A-4D show use of the anchor assembly of the

DETAILED DESCRIPTION OF THE **EMBODIMENTS**

The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the disclosure, its application, or uses.

FIGS. 1-3 show the anchor assembly 10 of the present disclosure. The assembly 10 includes the anchor 20 and the insertion member 30. The anchor 20 includes a proximal portion 21, a distal portion 22, and an inner cavity 23. An opening 24 to the cavity 23 is located at the proximal portion 5 21 of the anchor 20. A transverse through hole 25 is located between the proximal and distal portions 21,22 and extends through the anchor 20. Openings 25a,b are located at each end of the through hole 25. Located below each opening 25a,b is a protrusion 26. The protrusions 26 facilitate loading of a 10 flexible member, such as a suture, through the through hole 25, and allow for the creation of a path in the wall of a bone hole when the anchor 20 is inserted into bone hole, as will be further described below. The outer surface 27 of the proximal portion 21 also includes barbs 28 for substantially reducing 15 the possibility of removal of the anchor 20 when inserted into bone, as will be further described below. The outer surface 27 also includes slots 29 extending from the openings 25a,b of the through hole 25 to the proximal portion 21 of the anchor 20. The slots 29 intersect the barbs 28 and are configured for 20 housing of the suture after positioning of the anchor 20 in bone, as further described below. As shown in FIG. 2, the cavity 23 extends into the through hole 25 and includes a proximal portion 23a and a threaded distal portion 23b for receipt of the insertion member 30, as will be further 25 described below.

The insertion member 30 includes a body 31, having a proximal end portion 31a and a flat distal end portion 31b, and a head 32 coupled to the proximal end portion 31a. The head 32 is configured for engagement with a delivery tool and the 30 body 31 includes threads 31c that are configured for engagement with the threads 23c of the cavity 23 when the insertion member is arranged within the cavity 23, as shown in FIG. 2.

The anchor 10 of the present disclosure may be used in conjunction with another anchor to repair soft tissue. FIGS. 35 4A-4D show the anchor assembly 10 in use during arthroscopic repair of the rotator cuff. However, the anchor assembly 10 may be used in the repair of soft tissue in other parts of the body. FIG. 4A shows a first anchor 40 that has been inserted into the lateral aspect of a bone 50, such as a humeral 40 bone. The anchor 40, which has a flexible member 60, such as a suture, coupled thereto is inserted into the bone 50, a soft tissue 70, such as a rotator cuff tendon, is placed on the bone 50 to be located adjacent to the anchor 40, and the ends 61 of the flexible member 60 are placed through the soft tissue 70.

Next, at least one end 61 of the flexible member 60 is passed through the transverse through hole 25 of a second anchor, such as the anchor 20 of the present disclosure, and the anchor 20 is subsequently placed into a previously drilled hole 51 in the medial aspect of the bone 50, as shown in FIG. 50 4B, such that the flexible member 60 is housed within the transverse through hole 25 and both slots 29 of the anchor 20 and the ends 61 extend out of the hole 51. The anchor 20 is advanced into the hole 50 in an axially-oriented manner by tapping on the end of a delivery tool (not shown) that is used 55 to deliver the anchor 20 into the hole 51. FIGS. 4B-4D show spaces between the outer surface 27 of the anchor 20 and the walls 52 of the hole 51. However, the diameter of the hole 51 will be sized such that the barbs 28 of the anchor 20 will abut the walls 52, and most likely extend through the walls 52 and 60 into the bone 50, in order to substantially reduce the possibility of anchor removal. In addition, due to the hole diameter, the protrusions 26 located below the openings 25a,b create a path (not shown) in the wall of the bone hole 51 when the anchor 20 is inserted into hole 51. This path allows the suture 60 to slide when through the anchor 20 when the anchor 20 is located within the hole 51.

4

After placement of the anchor 20 into the hole 51, the ends 61 of the flexible member 60 may be pulled to provide a preferred amount of tension on the flexible member 60 and the soft tissue 70. This tension on the flexible member 60 can be seen in FIGS. 4C-D, especially when comparing these figures to FIG. 4B. The insertion member 30 is subsequently placed in the anchor cavity 23 in a rotary manner, via a delivery tool 80, to secure the flexible member 60 in the through hole 25 and the tissue 70 to the bone 50. The insertion member 30 may be removed from the cavity 23 to re-tension the flexible member 60 and then replaced within the cavity 23 to re-secure the flexible member 60 in the through hole 25.

The components of the anchor assembly 10 and the first anchor 40 are made from a bioabsorbable polymer material via an injection molding process. However, other materials and processes may be used. In addition, the suture material is made from a bioabsorbable polymer material, but other material may be used. Also, the initial anchor, such as the first anchor 40 shown above, may include more than one suture and the sutures may be secured together at one attachment point, such as within the second anchor 20 shown above, or independently at more than one attachment point. Furthermore, the outer surface 27 of the anchor 20 may include features other than barbs 28 to reduce the possibility of removal of the anchor 20 and the barbs 28 may extend the entire length or a partial length of the anchor 20. Similarly, the body 31 of the insertion member 30 and the cavity 23 of the anchor 20 may include features other than threads to facilitate insertion and removal of the insertion member 30 and the threads may extend the entire length or a partial length of the body 31 and cavity 23. Also, for the purposes of this disclosure, the through hole 25 is located between the proximal 21 and distal 22 portions, but may be located anywhere along the length of the anchor 20.

The anchor assembly 10 of the present disclosure allows a surgeon to load a suture from a previously placed anchor and secure the suture in the assembly 10 at a preferred tension. In addition, the assembly 10 allows the tension on the suture to be adjusted with tactile feedback. Furthermore, the assembly allows for one or more sutures to be secured together at one attachment point, such as described above with the second anchor 20, or independently at several attachment points. This allows for a large area of contact between the tissue and the bone and results in a better repair.

As various modifications could be made to the exemplary embodiments, as described above with reference to the corresponding illustrations, without departing from the scope of the disclosure, it is intended that all matter contained in the foregoing description and shown in the accompanying drawings shall be interpreted as illustrative rather than limiting. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims appended hereto and their equivalents.

What is claimed is:

1. An anchor assembly comprising:

an anchor defining a cavity comprising a proximal portion and a distal portion, the proximal portion including a larger diameter than the distal portion, an opening to the cavity, and a transverse through hole extending through the anchor, the through hole including openings at each end of the through hole that open to an outer surface of the anchor, the cavity extending into the through hole; and

an insertion member configured for arrangement within the anchor cavity, the insertion member including a body

5

having a proximal end portion and a flat distal end portion, and a head coupled to the proximal end portion of the body

wherein the anchor includes protrusions located on an outer surface of the anchor and below the through hole openings, the protrusions tapered along their lengths and extending away from the outer surface of the anchor, the protrusions arranged on the outer surface such that nontapered areas are located between the protrusions, the protrusions configured to facilitate loading of a flexible member into the anchor, wherein the non-tapered areas are rounded.

- 2. The anchor assembly of claim 1 further comprising at least two slots on an outer surface of the anchor.
- 3. The anchor assembly of claim 2 wherein the anchor 15 includes barbs on an outer surface of the body.
- 4. The anchor assembly of claim 1 wherein at least one flexible member is disposed within the through hole.
- 5. The anchor assembly of claim 1 wherein the cavity includes threads.
- **6**. The anchor assembly of claim **5** wherein the insertion member body includes threads, the threads configured for engagement with the threads of the cavity when the insertion member is arranged within the cavity.
- 7. The anchor assembly of claim 1 wherein the head is 25 configured for engagement with a delivery device.
- 8. The anchor assembly of claim 4 wherein the insertion member is arranged within the anchor cavity such that the insertion member secures the flexible member in the through hole.
- **9**. The anchor assembly of claim **4** wherein a plurality of flexible members are disposed within the through hole.
- 10. The anchor assembly of claim 4 wherein the flexible member includes a suture.
- 11. The anchor assembly of claim 2 wherein the slots 35 extend from the transverse through hole to a proximal portion of the anchor.
- 12. The anchor assembly of claim 3 wherein the barbs are intersected by the slots.
- 13. The anchor assembly of claim 1 wherein the through 40 hole openings are in alignment with each other.
- **14**. The anchor assembly of claim **5** wherein the distal portion of the cavity is threaded and the proximal portion of the cavity is non-threaded.
 - 15. An anchor assembly comprising:
 - an anchor defining a proximal portion, a distal portion, and an inner cavity comprising a proximal portion and a distal portion, the proximal portion including a larger diameter than the distal portion, and a transverse through hole extending through the anchor, the through hole 50 including openings at each end of the through hole that open to an outer surface of the anchor, the cavity extending into the through hole; and
 - an insertion member configured for arrangement within the inner cavity, wherein the anchor includes barbs located 55 on the proximal portion and protrusions located on the distal portion and below the through hole openings, the protrusions tapered along their lengths and extending away from an outer surface of the anchor, the protrusions arranged on the outer surface such that non-tapered 60 areas are located between the protrusions, the protrusions configured to facilitate loading of a flexible member into the anchor, wherein the non-tapered areas are rounded.

16. The anchor assembly of claim **15** wherein the insertion 65 member includes a proximal end portion and a flat distal end portion.

6

- 17. The anchor assembly of claim 15 wherein the through hole openings are in alignment with each other.
- 18. The anchor assembly of claim 15 wherein the distal portion of the cavity is threaded and the proximal portion of the cavity is non-threaded.
 - 19. An anchor assembly comprising:
 - an anchor including a proximal portion and a closed-ended distal portion, the anchor defining a cavity comprising a proximal portion and a distal portion, the proximal portion including a larger diameter than the distal portion, an opening to the cavity, and a transverse through hole extending through the anchor, the through hole including openings at each end of the through hole that open to an outer surface of the anchor, the cavity extending into the through hole, wherein the anchor includes protrusions located on an outer surface of the anchor and below the through hole openings, the protrusions tapered along their lengths and extending away from the outer surface of the anchor, the protrusions arranged on the outer surface such that rounded non-tapered areas are located between the protrusions; and
 - an insertion member configured for arrangement within the anchor cavity, the insertion member including a body having a proximal end portion and a flat distal end portion, and a head coupled to the proximal end portion of the body, the head integral with the body and of a larger diameter than the body.
- **20**. The anchor assembly of claim **19** wherein the through note openings are in alignment with each other.
 - 21. The anchor assembly of claim 19 wherein the head is closed-ended.
 - 22. The anchor assembly of claim 19 wherein the insertion member body includes threads on its outer surface, non-threaded areas located above and below the threads, the non-threaded areas including the same diameter.
 - 23. The anchor assembly of claim 19 wherein the distal portion of the cavity is threaded and the proximal portion of the cavity is non-threaded.
 - **24**. An anchor assembly comprising:
 - an anchor including a proximal portion and a closed-ended distal portion, the anchor defining a cavity comprising a proximal portion and a distal portion, the proximal portion including a larger diameter than the distal portion, an opening to the cavity, and a transverse through hole extending through the anchor, the through hole including openings at each end of the through hole that open to an outer surface of the anchor, the cavity extending into the through hole, wherein the anchor includes protrusions located on an outer surface of the anchor and below the through hole openings, the protrusions tapered along theirs lengths and extending away from the outer surface of the anchor, the protrusions arranged on the outer surface such that rounded non-tapered areas are located between the protrusions; and
 - an insertion member configured for arrangement within the anchor cavity, the insertion member including a body having a proximal end portion and a flat distal end portion, and a head coupled to the proximal end portion of the body, the head integral with the body and of a larger diameter than the body.
 - wherein at least one flexible member is disposed within the through hole, the insertion member arranged within the anchor cavity such that the insertion member secures the flexible member in the through hole.
 - 25. The anchor assembly of claim 24 wherein the through hole openings are in alignment with each other.

7

26. The anchor assembly of claim 24 wherein the head is closed-ended

- 27. The anchor assembly of claim 24 wherein the insertion member body includes threads on its outer surface, non-threaded areas located above and below the threads, the non-threaded areas including the same diameter.
 28. The anchor assembly of claim 24 wherein the distal
- **28**. The anchor assembly of claim **24** wherein the distal portion of the cavity is threaded and the proximal portion of the cavity is non-threaded.

* * * * 10